Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19 Infection

Authors

Adarsh Bhimraj¹, Rebecca L. Morgan², Amy Hirsch Shumaker³, Valery Lavergne⁴, Lindsey Baden⁵, Vincent Chi-Chung Cheng⁶, Kathryn M. Edwards⁷, Rajesh Gandhi⁸, William J. Muller⁹, John C. O’Horo¹⁰, Shmuel Shoham¹¹, M. Hassan Murad¹², Reem A. Mustafa¹³, Shahnaz Sultan¹⁴, Yngve Falck-Ytter³

Affiliations

¹Department of Infectious Diseases, Cleveland Clinic, Cleveland, Ohio

²Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario

³VA Northeast Ohio Healthcare System, Case Western Reserve University School of Medicine, Cleveland, Ohio

⁴Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada

⁵Brigham and Women’s Hospital, Boston, Massachusetts

⁶Queen Mary Hospital, Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China

⁷Division of Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
Corresponding Author: Adarsh Bhimraj

Panel Members: Adarsh Bhimraj (lead), Lindsey Baden, Vincent Chi-Chung Cheng, Kathryn M. Edwards, Rajesh Gandhi, William J. Muller, John C. O’Horo, Shmuel Shoham, Amy Hirsch Shumaker

Methodologists: Yngve Falck-Ytter (lead), Rebecca L. Morgan, Valery Lavergne, M. Hassan Murad, Reem A. Mustafa, Shahnaz Sultan
Abstract

Background: There are many pharmacologic therapies that are being used or considered for treatment of COVID-19. There is a need for frequently updated practice guidelines on their use, based on critical evaluation of rapidly emerging literature.

Objective: Develop evidence-based rapid guidelines intended to support patients, clinicians and other health-care professionals in their decisions about treatment and management of patients with COVID-19 infection.

Methods: IDSA formed a multidisciplinary guideline panel of infectious disease clinicians, pharmacists, and methodologists with varied areas of expertise. Process followed a rapid recommendation checklist. The panel prioritized questions and outcomes. Then a systematic review of the peer-reviewed and grey literature was conducted. The Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach was used to assess the certainty of evidence and make recommendations.

Results: The IDSA guideline panel agreed on 7 treatment recommendations and provided narrative summaries of other treatments undergoing evaluations.

Conclusions: The panel expressed the overarching goal that patients be recruited into ongoing trials, which would provide much needed evidence on the efficacy and safety of various therapies for COVID-19, given that we could not make a determination whether the benefits outweigh harms for most treatments.
IDSA Disclaimer

It is important to realize that guidelines cannot always account for individual variation among patients. They are assessments of current scientific and clinical information provided as an educational service; are not continually updated and may not reflect the most recent evidence (new evidence may emerge between the time information is developed and when it is published or read); should not be considered inclusive of all proper treatments methods of care, or as a statement of the standard of care; do not mandate any particular course of medical care; and are not intended to supplant physician judgment with respect to particular patients or special clinical situations. Whether and the extent to which to follow guidelines is voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient’s individual circumstances. While IDSA makes every effort to present accurate, complete, and reliable information, these guidelines are presented “as is” without any warranty, either express or implied. IDSA (and its officers, directors, members, employees, and agents) assume no responsibility for any loss, damage, or claim with respect to any liabilities, including direct, special, indirect, or consequential damages, incurred in connection with these guidelines or reliance on the information presented.

The guidelines represent the proprietary and copyrighted property of IDSA. Copyright 2020 Infectious Diseases Society of America. All rights reserved. No part of these guidelines may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording, or other electronic or mechanical methods, without the prior written permission of IDSA. Permission is granted to physicians and health care providers solely to copy and use the guidelines in their professional practices and clinical decision-making. No license or permission is granted to any person or entity, and prior written authorization by IDSA is required, to sell, distribute, or modify the guidelines, or to make derivative works of or incorporate the guidelines into any product, including but not limited to clinical decision support software or any other software product. Except for the permission granted above, any person or entity desiring to use the guidelines in any way must contact IDSA for approval in accordance with the terms and conditions of third-party use, in particular any use of the guidelines in any software product.
Executive Summary

COVID-19 is a pandemic with a rapidly increasing incidence of infections and deaths. Many pharmacologic therapies are being used or considered for treatment. Given the rapidity of emerging literature, IDSA identified the need to develop living, frequently updated evidence-based guidelines to support patients, clinicians and other health-care professionals in their decisions about treatment and management of patients with COVID-19 infection.

Summarized below are the recommendations with comments related to the clinical practice guideline for the treatment and management of COVID-19. A detailed description of background, methods, evidence summary and rationale that support each recommendation, and research needs can be found online in the full text. In brief, per GRADE methodology, recommendations are labeled as “strong” or “conditional”. The word “recommend” indicates strong recommendations and “suggest” indicates conditional recommendations. In situations where promising interventions were judged to have insufficient evidence of benefit to support their use and with potential appreciable harms or costs, the expert panel recommended their use in the context of a clinical trial. These recommendations acknowledge the current “knowledge gap” and aim at avoiding premature favorable recommendations for potentially ineffective or harmful interventions.

Recommendation 1. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends hydroxychloroquine/chloroquine in the context of a clinical trial. (Knowledge gap)

Recommendation 2. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends hydroxychloroquine/chloroquine plus azithromycin only in the context of a clinical trial. (Knowledge gap)
Recommendation 3. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends the combination of lopinavir/ritonavir only in the context of a clinical trial. (Knowledge gap)

Recommendation 4. Among patients who have been admitted to the hospital with COVID-19 pneumonia, the IDSA guideline panel suggests against the use of corticosteroids. (Conditional recommendation, very low certainty of evidence)

Recommendation 5. Among patients who have been admitted to the hospital with ARDS due to COVID-19, the IDSA guideline panel recommends the use of corticosteroids in the context of a clinical trial. (Knowledge gap)

Recommendation 6. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends tocilizumab only in the context of a clinical trial. (Knowledge gap)

Recommendation 7. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends COVID-19 convalescent plasma in the context of a clinical trial. (Knowledge gap)

The panel expressed the overarching goal that patients be recruited into ongoing trials, which would provide much needed evidence on the efficacy and safety of various therapies for COVID-19. The panel determined that when an explicit trade-off between the highly uncertain benefits and the known putative harms of these therapeutic agents were considered, a net positive benefit was not reached and could possibly be negative (risk of excess harm). The panel acknowledges that enrolling patients in RCTs might not be feasible for many frontline providers due to limited access and infrastructure. Should lack of access to clinical trials exist, we encourage setting up local or collaborative registries to systematically evaluate the efficacy and safety of drugs to contribute to the knowledge base. Each clinician can play a role in advancing our understanding of this disease through a local registry or other data collection efforts.
Background

The first cases of coronavirus disease 2019 (COVID-19) were reported from Wuhan, China in early December 2019 [1], now known to be caused by a novel beta-coronavirus, named as Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Within a span of months COVID-19 has become pandemic due to its transmissibility, spreading across continents with the number of cases and deaths rising daily [2]. Although most infected individuals exhibit a mild illness (80%+), 14% have serious and 5% have critical illness. Approximately 10% will require hospital admission due to COVID-19 pneumonia, of which approximately 10% will require ICU care, including invasive ventilation due to acute respiratory distress syndrome (ARDS) [3]. While mortality appears to be more common in older individuals and those with comorbidities, such as chronic lung disease, cardiovascular disease, and diabetes, young people with no comorbidities also appear to be at risk for critical illness including multi-organ failure and death.

There has been an expanding number of studies rapidly published online and in academic journals; however, some of these may be of limited quality and are pre-published without sufficient peer-review. Critical appraisal of the existing studies is needed to determine if the existing evidence is sufficient to support currently proposed management strategies.

Given the rapid global spread of SARS-CoV-2 and the difficulty for the overburdened front-line providers and policymakers to stay up to date on emerging literature, IDSA has recognized the necessity of developing a rapid guideline for the treatment of COVID-19. The guideline panel used a methodologically rigorous process for evaluating the best available evidence and providing treatment recommendations. Two additional guidelines on diagnostic testing and infection prevention are also under development. These guidelines will be frequently updated as substantive literature becomes available and will be accessible on an easy to navigate web and device interface at http://www.idsociety.org/covid19guidelines.

These recommendations are intended to inform patients, clinicians, and other health professionals by providing the latest available evidence.
Methods

This guideline was developed using the GRADE approach for evidence assessment. In addition, given the need for an urgent response to a major public health crisis, the methodological approach was modified according to the GIN/McMaster checklist for the development of rapid recommendations [4].

Panel composition

The panel was composed of nine members including front line clinicians, infectious diseases specialists who are members of the IDSA, the HIV Medical Association (HIVMA), the Society for Healthcare Epidemiology of America (SHEA), and the Pediatric Infectious Diseases Society (PIDS). They represented the disciplines of public health, pharmacology, pediatrics, medical microbiology, preventive care, critical care, as well as hepatology, nephrology and gastroenterology. The Evidence Foundation provided technical support and guideline methodologists for the development of this guideline.

Disclosure and Management of Potential Conflict of Interest (COI)

The conflict of interest (COI) review group included two representatives from IDSA who were responsible for reviewing, evaluating and approving all disclosures. All members of the expert panel complied with the COI process for reviewing and managing conflicts of interest, which required disclosure of any financial, intellectual, or other interest that might be construed as constituting an actual, potential, or apparent conflict, regardless of relevancy to the guideline topic. The assessment of disclosed relationships for possible COI was based on the relative weight of the financial relationship (i.e., monetary amount) and the relevance of the relationship (i.e., the degree to which an association might reasonably be interpreted by an independent observer as related to the topic or recommendation of consideration). The COI review group ensured that the majority of the panel and chair was without potential relevant...
(related to the topic) conflicts. The chair and all members of the technical team were determined to be unconflicted.

Question generation

Clinical questions were developed into a PICO format (Population, Intervention, Comparison, Outcomes) [5] prior to the first panel meeting. Panel members prioritized questions with available evidence that met the minimum acceptable criteria (i.e., the body of evidence reported on at least a case-series design, case reports were excluded). Panel members prioritized patient-important outcomes such as mortality, development of ARDS (need for non-invasive or invasive ventilation) and clinical improvement (such as disease-oriented outcomes inferred by radiological findings or virologic cure), and severe adverse events leading to treatment discontinuation. Additional drug specific harms were evaluated when clinically relevant, including possible drug-drug reactions, if applicable.

Search strategy

The NICE highly-sensitive search was reviewed by the methodologist in consultation with the technical team information specialist and was determined to have high sensitivity [6]. An additional term, COVID, was added to the search strategy used in addition to the treatment terms identified in the PICO questions (Supplementary Table s1). Ovid Medline and Embase were searched from 2019 through April 4, 2020. Horizon scans were performed daily during the evidence assessment and recommendation process to locate additional grey literature and manuscript pre-prints. Reference lists and literature suggested by panelists were reviewed for inclusion. No restrictions were placed on language or study type.

Screening and study selection

Two reviewers independently screened titles and abstracts, as well as eligible full-text studies. When acceptable randomized controlled trials of effectiveness were found, no additional non-randomized studies or non-comparative evidence (i.e., single arm case series) were sought.
Evidence from single arm studies reporting on non-comparative rates of outcomes of interest were included if a historical control event rate could be estimated from the literature. Reviewers extracted relevant information into a standardized data extraction form.

For several interventions, no direct evidence was available other than case reports or mechanistic considerations. The panel either decided to include plausible indirect evidence and make a recommendation (e.g., from studies of SARS-CoV) or to provide a short narrative discussion of the intervention.

Data collection and analysis

Data extracted from the available evidence included: mortality, clinical progression or improvement as reported in the studies, virologic clearance, and adverse events. Where applicable, data were pooled using random effects model (fixed effects model for 2 or less trials or pooling of rates) using RevMan or OpenMeta [7].

Risk of bias and certainty of evidence

Cochrane risk of bias tools for randomized clinical trials (RCTs) and Observational Studies and modified domains were used in assessing confounding bias, selection bias, and misclassification bias [8]. The certainty of evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach [9]. GRADE summary of findings tables were developed in GRADEpro Guideline Development Tool [10].

Evidence to recommendations

The panel considered core elements of the GRADE evidence in the decision process, including Certainty of evidence and balance between desirable and undesirable effects. Additional domains were acknowledged where applicable (feasibility, resource use, acceptability). For all recommendations, the expert panelists reached consensus. Voting rules were agreed on prior to the panel meetings for situations when consensus could not be reached.
As per GRADE methodology, recommendations are labeled as “strong” or “conditional”. The words “we recommend” indicate strong recommendations and “we suggest” indicate conditional recommendations. Figure 1 provides the suggested interpretation of strong and weak recommendations for patients, clinicians, and healthcare policymakers. For recommendations where the comparators are not formally stated, the comparison of interest is implicitly referred to as “not using the intervention”.

In situations where promising interventions were judged with insufficient evidence of benefit to support their use and with potential appreciable harms or costs, the expert panel recommended their use “in the context of a clinical trial”. These recommendations acknowledge the current “knowledge gap” and aim at avoiding premature favorable recommendations for their use and to avoid encouraging the rapid diffusion of potentially ineffective or harmful interventions. Detailed suggestions about the specific research questions that should be addressed are found in the table (see Supplementary Table s2).
Figure 1. Approach and implications to rating the quality of evidence and strength of recommendations using the GRADE methodology (unrestricted use of the figure granted by the U.S. GRADE Network)

1. Rating the quality of the evidence

<table>
<thead>
<tr>
<th>Study design</th>
<th>Initial confidence in an estimate of effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Randomized trials</td>
<td>High confidence</td>
</tr>
<tr>
<td>Observational studies</td>
<td>Low confidence</td>
</tr>
</tbody>
</table>

2. Consider lowering or raising level of confidence

- Lower if
 - Risk of Bias
 - Inconsistency
 - Indirectness
 - Imprecision
 - Publication bias

- Higher if
 - Large effect
 - Dose response
 - All plausible confounding & bias require a demonstrated effect or suggest a spurious effect if no effect was observed

3. Final level of confidence rating

- High
- Moderate
- Low
- Very low

Review process

The draft guideline underwent a rapid review for approval by IDSA Board of Directors Executive Committee external to the guideline development panel. The IDSA Board of Directors Executive Committee reviewed and approved the guideline prior to dissemination.
Updating process

Regular, frequent screening of the literature will take place to determine the need for revisions based on the likelihood that any new data will have an impact on the recommendations. If necessary, the entire expert panel will be reconvened to discuss potential changes.

Results

Systematic review and horizon scan of the literature identified 435 references of which 13 informed the evidence base for these recommendations (Supplementary Figure s1).

Characteristics of the included studies can be found in Supplementary Tables s3a-3f.

Recommendation 1. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends hydroxychloroquine/chloroquine in the context of a clinical trial. (Knowledge gap)

Recommendation 2. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends hydroxychloroquine/chloroquine plus azithromycin only in the context of a clinical trial. (Knowledge gap)

Summary of the evidence

Two RCTs of patients with confirmed COVID with mild pneumonia (e.g., positive CT scan without oxygen requirement) or non-severe infection admitted to the hospital treated with hydroxychloroquine (HCQ) reported on mortality at 14 days, clinical progression (radiological progression on CT scan), clinical improvement, failure of virologic clearance (PCR), and adverse events (both) [11, 12] (Table 1).

In addition, we identified four publications describing three trials of combination treatment with HCQ plus azithromycin (AZ) among hospitalized patients with COVID-19 reporting on the
outcomes of mortality, failure of virologic clearance (assessed with PCR test), and adverse events (i.e., significant QT prolongation leading to treatment discontinuation) [13-16] (Table 2).

Benefits

The currently available best evidence failed to demonstrate or to exclude a beneficial effect of HCQ on clinical progression of COVID-19 (as inferred by radiological findings; RR: 0.61; 95% CI: 0.26, 1.43; see Figure s2), or on viral clearance by PCR tests (RR: 2.00; 95% CI: 0.02, 20.00; see Figure s3), although a somewhat higher proportion in the HCQ group experienced clinical improvement (RR: 1.47; 95% CI 1.02, 2.11). However, the certainty in the evidence was rated as very low mainly due to small sample sizes (sparse data), co-interventions, and risk of bias due to methodological limitations. In addition, the selected outcomes should be considered indirect, as important patient outcomes (e.g., mortality, rate of progression to ARDS and need for mechanical ventilation) were unavailable.

Studies evaluating the addition of azithromycin to HCQ provided indirect comparisons of failure of virologic clearance to historical controls. The observed risk of mortality among patients receiving HCQ+AZ during hospital stay was 3.4% (6/175 patients). However, an estimated mortality rate in an untreated cohort was not provided in the manuscript. When compared to a lack of viral clearance in historical controls (100% virologic failure), 12 symptomatic patients were compared at day 5 or 6 from a separate hospital in France. Patients receiving treatment with HCQ+AZ experienced numerically fewer cases of virologic failure (43% pooled virologic failure; 29/71 patients) (Figure s3). There is very low certainty in this comparison of treatment effect mainly due to very high-risk selection bias, making any claims of effectiveness highly uncertain. In addition, relying on intermediary outcomes, such as viral clearance to determine patient-important outcomes (including a reduction in development of pneumonia, hospital or ICU admission, or need for intubation) add another layer of imprecision.

Harms

Two studies described significant QT prolongation in 10 of 95 treated patients, either resulting in an QT increase to over 500 ms or discontinuation of the HCQ/AZ treatment, illustrating the
high risk for clinically relevant arrhythmias for this treatment [15, 16]. In addition, several case reports of QT prolongation related to hydroxychloroquine have also been published [17-20].

In another prospective cohort study in 224 COVID uninfected patients with SLE who received either chloroquine or hydroxychloroquine for routine care, gastrointestinal side effects occurred in 7% of patients [21].

Several case reports have been published citing the risk of a prolonged QT prolongation, torsades de pointes, and ventricular tachycardia in patients receiving azithromycin alone. In a large cohort study, patients taking a five-day course of azithromycin had an increased risk of sudden cardiac death with a hazard ratio of 2.71 (1.58-4.64) vs. 0.85 (0.45-1.60), compared to patients receiving no antibiotic or amoxicillin, respectively [22]. Given the cumulative effect on cardiac conduction seen with hydroxychloroquine and azithromycin, if this combination was to be used in the context of a clinical trial, baseline and follow-up ECG monitoring would be indicated, as well as careful surveillance for other concomitant medications known to prolong the QT interval.

Renal clearance accounts for 15-25% of total clearance of hydroxychloroquine, however dose adjustments are not recommended according to package labeling. Chloroquine and hydroxychloroquine are metabolized by cytochrome P450 isoenzymes 2C8, 2D6, and 3A4 [23], therefore inhibitors and inducers of these enzymes may result in altered pharmacokinetics of these agents.

Providers are encouraged to visit resources such as the newly created website, https://www.covid19-druginteractions.org/ to aid in the evaluation and management of drug interactions with current and emerging investigational agents for COVID-19.

Azithromycin is low risk for cytochrome P450 interactions [24]; however additional pharmacologic adverse events including gastrointestinal effects and QT prolongation need to be carefully considered particularly in the outpatient setting where frequent ECG monitoring is not feasible.

Other considerations
The panel agreed that the overall certainty of evidence was very low due to concerns with risk of bias, inconsistency, indirectness, imprecision, and publication bias.

Conclusions and research needs for this recommendation

The guideline panel recommends that the use of HCQ or the HCQ+AZ combination only be used in the context of a clinical trial. This recommendation does not address the use of azithromycin for secondary bacterial pneumonia in patients with COVID-19 infection. Additional randomized controlled trials and prospective outcome registries are needed to inform research for treatment with HCQ alone or in combination with azithromycin for patients with COVID-19 (Table s2. Best practices/suggestions for research of treatments for patients with COVID-19).
Table 1. GRADE evidence profile, PICO 1

| Question: Hydroxychloroquine compared to no HCQ for hospitalized patients with COVID-19 (combined) |
|--|-----------|-------------|-----------------|-----------------|----------------|-----------------|-------------|
| Setting: Hospitalized patients |
	Certainty assessment	No of patients	Effect			
		HCQ	no HCQ	Relative (95% CI)	Absolute (95% CI)	
Mortality (follow up: 14 days)						
14 randomised trials	serious b	0/15 (0.0%)	0/15 (0.0%)	not estimable		
Clinical progression (as inferred by radiological/CT scan progression) (follow up: range 3 days to 6 days; assessed with: CT Scan)						
12 randomised trials	serious b	5/46 (10.9%)	11/46 (23.9%)	RR 0.61 (0.26 to 1.45)	93 fewer per 1,000 (from 177 fewer to 103 more)	
Clinical improvement (as inferred by CT scan findings) (follow up: 6 days)						
1 randomised trials	serious b	25/31 (80.6%)	17/31 (54.3%)	RR 1.47 (1.02 to 2.11)	258 more per 1,000 (from 11 more to 609 more)	
Failure of virologic clearance (follow up: 7; assessed with: PCR)						
1 randomised trials	serious b	2/15 (13.3%)	1/15 (6.7%)	RR 2.0 (0.2 to 20.0)	67 more per 1,000 (from 53 fewer to 1,000 more)	
Adverse events, any						
12 randomised trials	serious b	6/15 (13.3%)	2/15 (4.3%)	RR 2.69 (0.67 to 10.00)	70 more per 1,000 (from 14 fewer to 391 more)	

Explanations:
- CI: Confidence interval; RR: Risk ratio; SLE: Systemic Lupus Erythematosus
- a. Chen Z 2020 did not explicitly report on deaths
- b. Did not report on blindness (including outcome adjudication committee, sequence generation or allocation concealment; Chen J 2020: all patients received nebulised alpha-interferon, 80% vs. 67.7% of subjects received Abilix in the hydroxychloroquine vs. placebo arm, respectively. Two subjects in the control arm received lopinavir/ritonavir;
- c. Zero events
- d. Radiological progression is an intermediary for worsening to ARDS, need for intubation, and death
- e. 95% CI includes substantial beneficial effect as well as substantial harms
- f. Small sample size, optimal information size not met
- g. Viral clearance is a surrogate for clinical improvement, such as worsening to ARDS, intubation, and death
- h. Chen J 2020: 4 AEs include diarrhoea, fatigue and transient AST elevation. Chen Z 2020: 1 rash, 1 headache. Several case reports of QT prolongation related to hydroxychloroquine have been published. In another prospective cohort study in 224 patients with SLE who received either chloroquine or hydroxychloroquine, gastrointestinal side effects occurred in 7% of patients.
- i. 3 AEs include: AST elevation, creatinine elevation and anaphylaxis
- j. Case reports

References:
Table 2. GRADE evidence profile, PICO 2
PICO 2: Hydroxychloroquine and azithromycin compared to no HCQ/azithromycin for hospitalized patients with COVID-19
Setting: Inpatients

<table>
<thead>
<tr>
<th>Certainty assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative (95% CI)</td>
<td>Absolute (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative %</td>
<td>Absolute %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>HCQ/azithromycin</td>
<td>no HCQ/azithromycin</td>
</tr>
</tbody>
</table>

| Mortality | 3 ^a^ observational studies | serious
2^a^ | not serious | not serious | serious | none | 6/175 (3.4%) | 6/175 (3.4%) | 6/175 (3.4%) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Virusologic Failure (follow up: range 5 days to 6 days; assessed with: PCR Test)</td>
<td>2 ^a^ observational studies</td>
<td>serious</td>
<td>serious</td>
<td>serious</td>
<td>none</td>
<td>29/71 (40.8%)</td>
<td>29/71 (40.8%)</td>
<td>29/71 (40.8%)</td>
</tr>
<tr>
<td>Significant QT prolongation</td>
<td>2 ^a^ observational studies</td>
<td>serious</td>
<td>serious</td>
<td>serious</td>
<td>none</td>
<td>10/55 (18.2%)</td>
<td>10/55 (18.2%)</td>
<td>10/55 (18.2%)</td>
</tr>
<tr>
<td>Adverse events</td>
<td>observational studies</td>
<td>serious</td>
<td>not serious</td>
<td>not serious</td>
<td>serious</td>
<td>none</td>
<td>Several case reports of QT prolongation related to hydroxychloroquine have been published. In another prospective cohort study in 224 patients with SLE who received either chloroquine or hydroxychloroquine, gastrointestinal side effects occurred in 23% of patients. Several case reports have been published citing the risk of a prolonged QT prolongation, torsades de pointes, and ventricular tachycardia in patients receiving azithromycin. In a large cohort study, patients taking a 5-day course of azithromycin had an increased risk of sudden cardiac death with a hazard ratio of 2.71 (1.56-4.84) vs. 0.35 (0.45-1.50), compared to no antibiotic or azithromycin, respectively. Given that both medications have QT prolonging effects, any combination is likely to substantially increase the risk of clinically relevant harmful effects.</td>
<td></td>
</tr>
</tbody>
</table>

O1: Confidence interval, RR: Risk ratio; SLE: Systemic Lupus Erythematosus

Explanation:
- ^a^ No contemporaneous control groups; no adjustment for baseline severity, resulting in high risk for residual confounding
- ^a^ A very small number of events. Optimal information size not met.
- ^b^ One study reported 1/11 at day 5; one study reported 1/20; one study reported 4/84.
- ^b^ Two cases from France showed divergent results.
- ^a^ Surrogate marker for mortality or resolution of COVID-19
- ^c^ Goutret reported 2/61 patients as positive at day 6 (estimate from supplied graph); Molina reported 8/10 patients positive at day 5 or 6. Pooled rates of virologic failure using fixed effects inverse variance method resulted in a 43% failure rate (55% CI, 32% to 54%)
- ^c^ Goutret reported on a historical virologic clearance rate in symptomatic patients from a separate hospital. Criteria for selection of patient remains unclear, as presumably a sizable number of unreported patients could have been available with data on viral clearance.
- ^d^ Azithromycin and hydroxychloroquine can independently cause QT prolongation. Used together there can be an additive effect. Caution should be exercised with other agents known to prolong the QT interval.
- ^e^ Molina 2020: 1/11 leading to treatment discontinuation; Chorn 2020: 3/84 with significant QTc prolongation of more than 500 ms
- ^f^ Case reports

References:
1. Molina JM, Delaquerre C, Cott J, et al. No Evidence of Rapid Antiviral Clearance or Clinical Benefit with the Combination of Hydroxychloroquine and Azithromycin in Patients with Severe COVID-19 Infection. Medicine et Maladies Infectieuses 2020
Recommendation 3. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends the combination of lopinavir/ritonavir only in the context of a clinical trial. (Knowledge gap)

Summary of the evidence

One RCT and two case studies reported on treatment with combination lopinavir/ritonavir for hospitalized patients with COVID-19 [25-27] (Table 3). Cao et al. randomized 199 hospitalized patients with severe COVID-19 to receive treatment with lopinavir/ritonavir in addition to standard of care (n=99) or standard of care alone (n=100) for 14 days. The trial reported on the following outcomes: mortality, failure of clinical improvement (measured using a 7-point scale or hospital discharge), and adverse events leading to treatment discontinuation.

Benefits

Based on a modified intention to treat analysis, treatment with lopinavir/ritonavir failed to show or exclude a beneficial effect on mortality (RR: 0.67; 95% CI: 0.38, 1.17) or on clinical improvement (RR: 0.78; 95% CI: 0.63, 2.20).

Harms

Nearly 14% of lopinavir/ritonavir recipients were unable to complete the full 14-day course of administration due primarily to gastrointestinal adverse events, including anorexia, nausea, abdominal discomfort, or diarrhea, as well as two serious adverse episodes of acute gastritis. Two recipients also had self-limited skin eruptions. The risk of hepatic injury, pancreatitis, severe cutaneous eruptions, QT prolongation, and the potential for multiple drug interactions due to CYP3A inhibition, are all well documented with this drug combination.

Other considerations

The panel elected to inform their decision based on the RCT [27]. The panel determined the Certainty of evidence to be very low due to concerns with risk of bias (lack of blinding) and imprecision. In the randomized clinical trial conducted by Cao et al, the group that received lopinavir/ritonavir and the
group that did not had similar rates of viral decay. This finding suggests that lopinavir/ritonavir is not having a measurable antiviral effect, its purported mechanism of action.

Conclusions and research needs for this recommendation

The guideline panel recommends the use of lopinavir/ritonavir only in the context of a clinical trial. Additional clinical trials or prospective outcome registries are needed to inform research for treatment with lopinavir/ritonavir and other HIV-1 protease inhibitors for patients with COVID-19 (Supplementary Table s2).
Last updated April 11, 2020 at 10:58 AM EDT and posted online at www.idsociety.org/COVID19guidelines. Please check website for most updated version of these guidelines.

Table 3. GRADE evidence profile, PICO 3

PICO 3: Lopinavir/Ritonavir compared to Placebo for confirmed COVID-19 pneumonia

<table>
<thead>
<tr>
<th>Setting</th>
<th>Né of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality (follow up: 28 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ^ 1 randomised trials</td>
<td>serious a</td>
<td>not serious</td>
<td>not serious</td>
<td>very serious b</td>
</tr>
<tr>
<td>Failure of clinical improvement at 14 days (follow up: 14 days):</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ^ 1 randomised trials</td>
<td>serious a</td>
<td>not serious</td>
<td>not serious</td>
<td>very serious b</td>
</tr>
<tr>
<td>AEs leading to treatment discontinuation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 ^ 1 randomised trials</td>
<td>serious a</td>
<td>not serious</td>
<td>not serious</td>
<td>very serious d</td>
</tr>
</tbody>
</table>

Ct: Confidence interval; RR: Risk ratio

Explanations

a. Unblinded study which can affect outcomes that require judgment, such as how investigators judge clinical improvement or decide to stop the treatment in patients with side effects.

b. 95% CI includes substantial beneficial effects as well as substantial harms (potentially a relative increase in mortality increase of 17% and a doubling of the likelihood of not clinically improving).

c. Modified intention to treat analysis data used for this outcome. Some deaths were excluded when drug was not given.

d. Small number of events making estimates highly uncertain

References

Recommendation 4. Among patients who have been admitted to the hospital with COVID-19 pneumonia, the IDSA guideline panel suggests against the use of corticosteroids. (Conditional recommendation, very low certainty of evidence)

Recommendation 5. Among patients who have been admitted to the hospital with ARDS due to COVID-19, the IDSA guideline panel recommends the use of corticosteroids in the context of a clinical trial. (Knowledge gap)

Summary of the evidence

No studies were found specifically examining the role of steroids for the treatment of the acute COVID-19 infection. Corticosteroids were widely used in China to prevent the development of ARDS in patients with COVID-19 pneumonia. Four retrospective cohort studies [25, 26, 28, 29] examined several interventions during the COVID-19 outbreak in the Wuhan area. Studies show variability in the benefit of corticosteroid use (Tables 4 and 5). Study limitations include: 1) critical information not reported on baseline risk/severe pneumonia/ARDS; 2) confounding by indication; 3) unadjusted analyses; 4) timing of disease not given; 5) large variability in treatments given. Due to these limitations, a sensible pooling effort to determine possible treatment effect was not deemed possible.

Benefits and Harms

The panel determined that due to the limitation of direct COVID-19 data, indirect evidence from the 2003 SARS outbreak and from MERS would also be considered. A systematic review [30] reported on 15 studies, 13 of which were inconclusive to any benefits of corticosteroids. One RCT reported that SARS-CoV-1 viral loads showed delayed viral clearance associated with corticosteroid use.

The same review also reported on a subset of ARDS patients (three trials). One small RCT in 24 patients using a lower dose methylprednisolone for two days showed possible improvement of ARDS; however, two larger trials showed little or no effect in critically ill patients with pulmonary failure. The authors concluded that despite widespread use of corticosteroids during the SARS outbreak, conclusive
Evidence of benefit was lacking and that administering steroids early in the disease process before viral replication is controlled may lead to a delay in viral clearance.

Other considerations

The panel deemed the certainty of the direct evidence as very low owing to concerns with risk of bias, inconsistency, and imprecision. The panel based their decision to conditionally recommend against the use of corticosteroids among patients admitted to the hospital on the indirect findings from the systematic review on SARS-CoV.

Conclusions and research need for these recommendations

As COVID-19 infection is a self-limited viral illness in most cases, a small subset of patients progresses from COVID-19 pneumonia to develop ARDS. Based on limited data from other coronaviruses, there is no clear benefit and potential harm from corticosteroids. Carefully designed RCTs and prospective outcome registries are needed to determine the dose, route, timing, and duration of such treatment on the prevention of clinical deterioration and to better understand the potential harms associated with its use. If a person is on a steroid (inhaled or systemic) for another indication (e.g., asthma), the steroid should be continued.
Table 4. GRADE evidence profile, PICO 4
PICO 4: Corticosteroids compared to no corticosteroids for hospitalized patients with COVID-19 without ARDS
Setting: Inpatient

<table>
<thead>
<tr>
<th>Certainty assessment</th>
<th>Nr of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Relative (95% CI)</td>
<td>Absolute (95% CI)</td>
</tr>
<tr>
<td>Mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>observational studies</td>
<td>very serious*</td>
<td>serious*</td>
<td>not serious</td>
<td>not serious</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No comparative effectiveness studies. 4 retrospective cohorts examining large number of interventions during COVID-19 outbreak in Wuhan area. Studies show variability of corticosteroid use. Study limitations include: 1) critical information not reported on baseline risk/severe pneumonia/ARDS; 2) confounding by indication; 3) unadjusted analysis; 4) timing of disease not given; 5) large variability in treatments given, preventing a sensible pooling effort. Indirect evidence from the 2003 SARS outbreak showed little or no benefits and possible harms by increasing viral loads.</td>
<td></td>
</tr>
<tr>
<td>Clinical deterioration</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>observational studies</td>
<td>serious*</td>
<td>not serious</td>
<td>not serious</td>
<td>serious*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No comparative effectiveness trial available. Sun 2020 presents odds of deterioration (includes mortality) across 10× treatments, including glucocorticoids: unadjusted and adjusted analyses estimate OR = 3.0 (95% CI 1.2-7.6). Limitations of note: 1) restricted patients to less severe population; 2) confounding; 3) timing of when given.</td>
<td></td>
</tr>
<tr>
<td>Progression to ARDS - not reported</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CI: Confidence interval. ARDS: Acute respiratory distress syndrome. OR: Odds ratio.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Explanations:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a. Study limitations include: 1) critical information not reported on baseline risk/severe pneumonia/ARDS; 2) confounding by indication; 3) unadjusted analysis; 4) timing of disease not given; 5) variability in treatments given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b. Some studies show benefits, some no effect, and some harms.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c. Imprecision likely given the heterogeneity.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d. 1) restricted patients to less severe population; 2) confounding; 3) timing of when given.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e. Few patients included.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

References:
Last updated April 11, 2020 at 10:58 AM EDT and posted online at www.idsociety.org/COVID19guidelines. Please check website for most updated version of these guidelines.

Table 5. GRADE evidence profile, PICO 5

<table>
<thead>
<tr>
<th>Study design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>certainty Assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Certainty</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>observational</td>
<td>serious *</td>
<td>serious 8</td>
<td>not serious</td>
<td>not serious</td>
<td>none</td>
<td>CRITICAL</td>
<td>4 12 14</td>
<td>corticosteroids</td>
<td>Relative (95% CI)</td>
<td>Absolute (95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no corticosteroids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.86 (0.79-0.94)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mortality

No comparative effectiveness studies. 4 retrospective cohorts examining large number of interventions during COVID-19 outbreak in Wuhan area. Studies show variability of corticosteroid use. Study limitations include: 1) critical information not reported on baseline risk/severe pneumonia/ARDS; 2) confounding by indication; 3) unadjusted analyses; 4) timing of disease not given; 5) large variability in treatments given, preventing a sensible pooling effort. A systematic review [31] reported on 15 studies in patients with SARS outbreak of 2002-2003, 13 of which were inconclusive to any benefits of corticosteroids. One RCT reported measured SARS-CoV viral loads which showed a delay of viral clearance associated with corticosteroids. The same review also reported on a subset of ARDS patients (3 trials). One small RCT in 24 patients using a lower dose methylprednisolone for 2 days showed possible improvement of ARDS; however, 2 larger trials showed little or no effect in critically ill patients with pulmonary failure. The authors concluded that despite widespread use of corticosteroids during the SARS outbreak, conclusive evidence of benefit was lacking and that administering steroids early in the disease process before viral replication is controlled may lead to a delay in viral clearance.

Clinical deterioration

1 5 observational studies serious 4 not serious not serious serious 4 none CRITICAL

No comparative effectiveness trial available. Sun 2020 presents odds of deterioration (includes mortality) across 10+ treatments, including glucocorticoids. Unadjusted and adjusted analyses estimate OR = 3.0 (95% CI 1.2-7.8) for deterioration associated with steroids across the entire hospitalization.

Progression to Acute respiratory distress syndrome (ARDS) - not reported

- - - - - - - - - - -

CI: Confidence interval. ARDS: Acute respiratory distress syndrome. OR: Odds Ratio

Explanations:

a. Study limitations include: 1) critical information not reported on baseline risk/severe pneumonia/ARDS; 2) confounding by indication; 3) unadjusted analyses; 4) timing of disease not given; 5) variability in treatments given.

b. Some studies show benefits, some no effect, and some harms.

c. Imprecision likely given the heterogeneity.

d. 1) restricted patients to less severe population; 2) confounding; 3) timing of when given.

e. Few patients included.

References:

Recommendation 6. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends tocilizumab only in the context of a clinical trial. (Knowledge gap)

Summary of the evidence

Studies reporting on the pathogenesis of SARS and MERS-CoV suggest a release of proinflammatory cytokines including interleukins-6 (IL-6) [31] during the clinical illness. Our search identified one study [31] that reported on 21 severe or critical patients with COVID-19 infection treated with tocilizumab, an IL-6 blocker (Table 6). This study had no control group. To estimate a control group rate in patients who did not get treatment with tocilizumab, Xu et al. described findings from Yang 2020, which suggested a baseline mortality rate of 60% in critical patients and 11% in severe patients admitted to the ICU [32].

Benefits

We estimate that the patients in Xu 2020 (21 patients, 4 critical and 17 severe) would have a baseline mortality risk of 20% as matched in severity. Therefore, treatment with tocilizumab may have reduced mortality since there were no deaths reported out of 21 patients. However, this conclusion remains highly uncertain given the lack of a contemporaneous control or adjustments for confounding factors. Out of 21 patients, 19 were discharged from the hospital suggesting a 9.5% rate of failure of clinical improvement in the CT scan findings.

Harms

Xu et al. reported no serious adverse events [31]. However, patients receiving tocilizumab are often at an increased risk of serious infections (bacterial, viral, invasive fungal infections, and tuberculosis) and hepatitis B reactivation [33]. Cases of anaphylaxis, severe allergic reactions, severe liver damage and hepatic failure, and intestinal perforation have been reported after tocilizumab administration in patients without COVID-19 infections.

Tocilizumab is not metabolized by the cytochrome P450 isoenzyme system, however elevated IL-6 levels seen in inflammatory states have been shown to inhibit these enzymes, thereby slowing the metabolism of drugs through these pathways. As the 3A4 pathway is responsible for metabolism of
many commonly used medications, administration of IL-6 inhibitors like tocilizumab may result in enhanced metabolism in drugs utilizing the cytochrome P450 system [34, 35].

Other considerations

The panel determined that the overall certainty of the evidence was very low due to concerns of high risk of bias due to confounding, indirectness, and imprecision.

Conclusions and research needs for this recommendation

The guideline panel recommended tocilizumab only in the context of a clinical trial. Additional clinical trials are needed to inform research on the effectiveness of treatment with tocilizumab for patients with COVID-19 (Supplementary Table s2).
Recommendation 7. Among patients who have been admitted to the hospital with COVID-19, the IDSA guideline panel recommends COVID-19 convalescent plasma in the context of a clinical trial. (Knowledge gap)

Summary of the evidence

Our search identified two case series of a total of 15 patients reporting on the outcomes of mortality, failure of clinical improvement (as inferred by need for continued mechanical ventilation), and treatment related adverse events among hospitalized patients with COVID-19 infection (Table 7) [36, 37]. All five patients in Shen 2020 were mechanically ventilated at time of treatment compared with three out of 10 patients in the Duan et al study. Duan 2020 included a comparison of the 10 treated patients to 10 historical control patients matched on age, gender, and severity of illness. Both studies lacked adjustments for critical confounders including co-treatments, baseline characteristics, disease severity, and timing of plasma delivery.

Benefits

Compared with a 30% mortality rate in the historical control (3/10), no deaths were reported among patients receiving COVID-19 convalescent plasma. Out of eight patients across both studies on mechanical ventilation at time of treatment, 50% (n=4) were extubated at time of data collection.

Harms

Among 10 patients, no serious adverse reactions or safety events were recorded following COVID-19 convalescent transfusion.

Other considerations

The panel agreed on the overall certainty of evidence as very low due to concerns with risk of bias and imprecision. Continuation of mechanical ventilation was used as a surrogate for failure of clinical improvement; however, the panel recognized the importance of the timeframe for extubation when associating it to plasma transfusion. Given the limited information provided about time of extubation, the panel recognized an additional knowledge gap with the assessment of this outcome.
Conclusions and research needs for this recommendation

The guideline panel recommends COVID-19 convalescent plasma in the context of a clinical trial. Additional clinical trials are needed to inform research for treatment with COVID-19 convalescent plasma for patients with COVID-19 (Supplementary Table s2).
Narrative summaries of treatments undergoing evaluation

In addition to the clinical questions addressed above, the panel identified several treatments currently undergoing evaluation for which additional data are needed to formulate recommendations. Narrative summaries for these treatments are provided below.

HIV antivirals

In-vitro antiviral activity of darunavir against SARS-CoV-2 showed no activity at clinically relevant concentrations. Three randomized, open-label clinical trials are currently listed on clinicaltrials.gov evaluating darunavir/cobicistat as a potential therapeutic option for COVID-19. Janssen, the manufacturer of darunavir/cobicistat has reported that one of these trials [38] has concluded that darunavir/cobicistat plus conventional treatments was not effective in achieving viral clearance at day seven post randomization, compared to conventional treatments alone. Clinical outcomes of this trial including rate of critical illness and mortality 14 days after randomization, have not been reported to date.

Lopinavir-ritonavir combined with interferon beta or other antivirals

Lopinavir-ritonavir is a combination of protease inhibitors for the treatment of HIV infection. Lopinavir-ritonavir has been shown to have in-vitro antiviral activity against beta-coronaviruses such as SARS-CoV, and MERS-CoV [39-42]. Since lopinavir-ritonavir is not specifically designed for treatment of coronavirus, lopinavir-ritonavir alone may not demonstrate a difference from placebo in reducing viral load when treatment was initiated at a median of 13 days after symptoms onset [41]. In an open label treatment trial, lopinavir-ritonavir with ribavirin reduced the mortality and requirement of intensive care support of hospitalized SARS patients compared with historical control [41]. Many interferons, especially interferon beta have been shown to have modest in-vitro antiviral activity against SARS-CoV and MERS-CoV [39, 40]. Lopinavir-ritonavir or interferon beta-1b has been shown to reduce viral load of MERS-CoV and improve lung pathology in a nonhuman primate model of common marmoset [42]. Lopinavir/ritonavir and interferon-β1b alone or in combination are being evaluated in clinical trials.
COVID convalescent plasma for prophylaxis

There is a long history of using convalescent plasma as treatment for infectious diseases, including severe viral lower respiratory tract infections [43]. Individuals who have recovered from SARS-CoV-2 infection may generate neutralizing antibodies [44, 45] that could have application to prevention of infection in certain settings, such as individuals with underlying conditions predisposing to severe disease and those with high-risk exposure. Monoclonal antibodies against other respiratory viruses have been shown to be protective against hospitalization in specific high-risk populations [46, 47] and animal models have suggested utility in prophylaxis against SARS coronavirus infection [48]. There are some risks associated with the use of convalescent plasma like transfusion-related acute lung injury or a theoretical risk of antibody-dependent enhancement of infection (ADE). ADE can occur in several viral diseases and involves an enhancement of disease in the presence of certain antibodies [49]. A trial from patients recovered from SARS-CoV-2 infection for use as prophylaxis in adults with a high-risk exposure is expected to begin recruiting shortly [50].

Ribavirin

There are only in vitro data available on the activity of ribavirin on SARS-CoV-2 currently. The EC50 (half maximal effective concentrations) was significantly higher than for chloroquine and remdesivir, so it appears less potent in vitro compared to these agents [51]. There are limited clinical studies in SARS-CoV-1 and MERS-CoV infections. In a systematic review of ribavirin treatment in patients infected with SARS-CoV-1, 26 studies were classified as inconclusive, and four showed possible harm [30]. In a retrospective observational study in patients with MERS-CoV infection, the combination of ribavirin and interferon, compared to no antiviral treatment, was not associated with improvement in the 90-day mortality or more rapid MERS-CoV RNA clearance [52].

Oseltamivir

Oseltamivir is a neuraminidase inhibitor used for prophylaxis and treatment of influenza. Given its specificity for an enzyme not found on coronaviruses, it is unclear what the mechanism of action would be against COVID-19. However, this has been used in combinations of antiviral therapy in Wuhan [53].
Intravenous immunoglobulin

Intravenous immunoglobulin (IVIg) has been used as an adjuvant to treat a variety of pathogens either as a pooled product or in a concentrated more pathogen focused (hyperimmune) form. As the community from which a given batch of IVIg is derived from includes increasing numbers of individuals who have recovered from SARS-CoV-2, the possibility of protective antibodies being present in the pooled product is increased. However, the potential utility of IVIg for the treatment of SARS-CoV-2 is unknown at this time. Its use has been reported in a few patients with COVID-19 [57], but studies are needed to determine if there may be a role for IVIg in the treatment of SARS-CoV-2.

Remdesivir

Remdesivir (GS-5734) is a broad-spectrum antiviral nucleotide prodrug with potent in vitro activity against a range of RNA viruses including Ebola virus, Marburg, MERS-CoV, SARS-CoV, respiratory syncytial virus, Nipah virus, and Hendra virus [58-60]. The mechanism of action of remdesivir is premature termination of viral RNA transcription [60]. Its use improved disease outcomes and reduced viral loads in SARS-CoV-infected mice [59]. The efficacy of prophylactic and therapeutic remdesivir was tested in a rhesus macaque model of MERS-CoV infection [61]. Prophylactic remdesivir treatment initiated 24 hours prior to inoculation completely prevented MERS-CoV-induced clinical disease, strongly inhibited MERS-CoV replication in respiratory tissues, and prevented the formation of lung lesions [61]. Therapeutic remdesivir treatment initiated 12 hours post-inoculation reduced clinical signs, virus replication in the lungs, and decreased the presence and severity of lung lesions. A recent case series of 53 patients with severe COVID-19 pneumonia who received remdesivir under a compassionate-use protocol reported clinical improvement in 68% after a median follow-up of 18 days, with 13% mortality and a generally acceptable toxicity profile [62]. However, there was no comparison group of similar patients who received standard care at the participating institutions.
Because RCTs for remdesivir have not been completed, formalized recommendations will be made once the entire body of evidence for remdesivir is available.

Should NSAIDS be stopped in patients infected with COVID-19?

The role of NSAIDs in the management of SARS-CoV2 has been discussed widely. Recent anecdotal reports and subsequent warnings from health officials have suggested against the use of NSAIDs in the care of patients with COVID-19; however, neither FDA, EMA, or WHO have identified evidence linking NSAIDS to COVID-related clinical deterioration. Human coronaviruses, including SARS CoV-2, use ACE2 to bind to human targets and gain entry into target cells [63]. It has been theorized that NSAIDs, due to upregulation in ACE2 in human target cells, may lead to a more severe course of COVID-19 in those taking NSAIDs. While no causal evidence of adverse outcomes with NSAIDs in the management of COVID-19 have been published, there are well known risks of non-steroidal anti-inflammatory agents including cardiovascular, gastrointestinal and renal adverse events [64, 65]. In the setting of bacterial pneumonia, NSAIDs may impair recruitment of polymorphonuclear cells, resulting in a delayed inflammatory response and resolution of infection, however a causal relationship has not been established [66, 67]. RCTs are needed to better understand the safety of NSAIDS in the management of patients with COVID-19. One RCT is currently underway to evaluate the role of naproxen in those critically ill with COVID-19 [68].

Should ACE and ARB’s for hypertension be stopped in patients infected with COVID19?

Angiotensin converting enzyme 2 (ACE2) is the receptor for SARS CoV-2 on human cells. Because angiotensin-converting enzyme (ACE) inhibitors and angiotensin receptor blockers (ARBs) may increase ACE2 expression, the possibility has been raised that these drugs may increase the likelihood of acquiring SARS-CoV-2 or may exacerbate the course of COVID-19. To date, however, there are no clinical data to support this hypothetical concern. For this reason, the American Heart Association, the Heart Failure Society of America and the American College of Cardiology all recommend that ACE inhibitors or ARBs be continued in people who have an indication for these medications [69].
Discussion

During epidemics like the current COVID-19 pandemic, when there are no clinically proven treatments, the tendency is to use drugs based on in vitro antiviral activity, or on anti-inflammatory effects or based on limited observational studies. It is commendable that observational studies are done during an epidemic, but often they do not have concurrent controls, have a significant risk of bias, and use surrogate outcomes like viral clearance rather than patient-important outcomes. Medications that were thought to be effective based on in vitro studies and observational studies for other diseases were later proven to be ineffective in clinical trials [70].

Due to the understandable urgency in producing, synthesizing and disseminating data during the current pandemic, there has been a noticeable increase in fast track publication of studies. In addition to well-established concerns that may decrease our certainty in the available evidence, there may be additional issues that will ultimately influence the trustworthiness of that evidence, including: 1) Circumvention of usual research steps (delay of IRB approval [71], inclusion of same patients in several studies); 2) Limited peer-review process (the usual due diligence from editors and reviewers is side-stepped, potentially leading to unnoticed errors in data and calculations, incomplete reporting of methods and results, as well as underestimation of study limitations); 3) Increased potential for publication bias (in the interest of showing promising data and in the race to achieve recognition, there may be added inclination to publish positive results and disregard negative ones). The extent and impact of these considerations remain currently uncertain but were acknowledged in the development of this guideline.

Despite these limitations, the recommendations were based on evidence from the best available clinical studies with patient-important endpoints. The panel determined that when an explicit trade-off between the highly uncertain benefits (e.g., the panel was unable to confirm that HCQ increases viral cure or reduces mortality) and the known putative harms (QT prolongation and drug-drug interactions) were considered, a net positive benefit was not reached and could possibly be negative (risk of excess harm). The safety of drugs used for the treatment of COVID-19, especially in patients with cardiovascular disease, immunosuppressive conditions, or those who are critically ill with multi-organ failure has also not been studied. Drugs like azithromycin and hydroxychloroquine can cause QT
prolongation and potentially life-threatening arrhythmias. Steroids and IL-6 inhibitors can be immunosuppressive and potentially increase risk of secondary infections. Steroids may produce long term side effect such as osteonecrosis [72]. Given that the panel could not make a determination whether the benefits outweigh harms for these treatments it would be ethical and prudent to enroll patients with COVID-19 in clinical trials, rather than use clinically unproven therapies [73]. There are multiple ongoing trials, some with adaptive designs, which potentially can quickly answer pressing questions on efficacy and safety of drugs in the treatment of patients with COVID-19.

We acknowledge that enrolling patients in RCTs might not be feasible for many frontline providers due to limited access and infrastructure. Should lack of access to clinical trials exist, we encourage setting up local or collaborative registries to systematically evaluate the efficacy and safety of drugs to contribute to the knowledge base. Without such evaluations we often attribute success to drugs and failure to disease (COVID-19) [70]. During such a pandemic, barriers to conducting studies and enrolling patients in trials for already overburdened front line providers should be minimized while ensuring the rights and safety of patients [74].

For clinical trials and observational studies, it is critical to determine a priori standardized & practical definitions of patient populations, clinical syndromes, disease severity and outcomes. Observational and non-experimental studies can sometimes answer questions not addressed by trials, but there is still a need for standardized definitions. For clinical syndromes clearly distinguishing between asymptomatic carrier state, upper respiratory tract infection and lower respiratory tract infection is important. Illness severity should be reasonably defined using readily available clinical criteria of end organ failure, like the degree of respiratory failure using Sa02 or Fi02:Pa02 ratios for lower respiratory tract infection, as opposed to location-based severity determinations such as ICU admission, which can lead to bias based on resource limitations (i.e., bed availability) or regional/institutional practice patterns [75]. For outcomes of prophylaxis trials, the primary endpoint should be prevention of infection and for therapeutic trials patient centered outcomes like reduction of mortality (both short term and long term) [76]. Trials should also study treatments in high risk populations or special populations like immunosuppressed patients, people with HIV, patients with cardiovascular
comorbidities and pregnant women. The panel expressed the overarching goal that patients be
recruited into ongoing trials, which would provide much needed evidence on the efficacy and safety of
various therapies for COVID-19.

This is a living guideline that will be frequently updated as new data emerges. Updates and changes to
the guidance will be posted to the IDSA website.
Acknowledgement:

The expert panel thanks the Infectious Diseases Society of America for supporting guideline development, and specifically Cindy Sears, Dana Wollins, Genet Demisashi, and Rebecca Goldwater for their continued support throughout the guideline process.

Financial Support: This project was funded by IDSA.

COI Summary:

The following list is a reflection of what has been reported to the IDSA. To provide thorough transparency, the IDSA requires full disclosure of all relationships, regardless of relevancy to the guideline topic. Evaluation of such relationships as potential conflicts of interest is determined by a review process which includes assessment by the Board of Directors liaison to the Standards and Practice Guideline Committee and, if necessary, the Conflicts of Interest (COI) and Ethics Committee. The assessment of disclosed relationships for possible COI is based on the relative weight of the financial relationship (i.e., monetary amount) and the relevance of the relationship (i.e., the degree to which an association might reasonably be interpreted by an independent observer as related to the topic or recommendation of consideration). The reader of these guidelines should be mindful of this when the list of disclosures is reviewed. L.B. receives research funding from the National Institutes of Health/National Institute of Allergy and Infectious Diseases, Bill and Melinda Gates Foundation, and Wellcome Trust, and serves as chair of the Antimicrobial Drug Advisory Committee of the Food and Drug Administration; V.C. receives research funding from the Health and Medical Research Fund (HMRF); K. E. serves as a scientific advisor for Merck, Bionet, IBM, Sanofi, X4 Pharmaceuticals, Inc., Seqirus, Inc., Moderna, Inc. and Pfizer, and receives research funding from the Centers for Disease Control and Prevention and the National Institutes of Health; R. G. has served on a scientific advisory board for Gilead Sciences, Inc., serves on a scientific advisory board for Merck, receives research funding from the NIH; M.H.M receives research funding from the Agency for Healthcare Research and Quality, the Endocrine Society, the Society for Vascular Surgery and The American Society of Hematology, is a Board member for the Evidence
Last updated April 11, 2020 at 10:58 AM EDT and posted online at www.idsociety.org/COVID19guidelines. Please check website for most updated version of these guidelines.

Foundation; **W.J.M.** serves in an advisory role for Seqirus, Inc. and receives research funding Ansun BioPharma, Astellas Pharma, Inc, AstraZeneca, Janssen Pharmaceutica, Karius, Melinta, Merck, Roche and Tetraphase; **S.S.** serves as an advisory board member for Amplyx Pharmaceuticals, Inc., as an advisor/consultant to ReViral Ltd., receives research funding from Ansun BioPharma, F2G, Shire (now Takeda), University of Nebraska, Cidara Therapeutics, and has served as an advisor for Janssen Pharmaceutica and Acidophil; **A.H.S.** receives research grant funding from the U.S. Department of Veterans Affairs; and **Y.F.Y.** receives honoraria for evidence reviews and teaching from the Evidence Foundation, honoraria for evidence reviews for the American Gastroenterological Association, and serves as a Director for the Evidence Foundation and for the U.S. GRADE Network. All other authors: no disclosures reported. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest. Conflicts that the editors consider relevant to the content of the manuscript have been disclosed. All other authors: no disclosures reported.
References

10. GRADEpro GDT. GRADEpro Guideline Development Tool [Software]. McMaster University, 2015 (developed by Evidence Prime, Inc.). Available at: gradepro.org.

54. Ning Q, Han M. A Prospective/Retrospective, Randomized Controlled Clinical Study of Antiviral Therapy in the 2019-nCoV Pneumonia. Available at: https://clinicaltrials.gov/ct2/show/NCT04255017.

55. Ning Q, Han M. A Randomized, Open, Controlled Clinical Study to Evaluate the Efficacy of ASC09F and Ritonavir for 2019-nCoV Pneumonia. Available at: https://clinicaltrials.gov/ct2/show/NCT04261270.

Supplementary Information

Table s1. Search strategy

Embase 1974 to 2020 April 03, Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily 2016 to April 03, 2020

<table>
<thead>
<tr>
<th>Search Strategy</th>
<th>Documents</th>
</tr>
</thead>
<tbody>
<tr>
<td>exp coronavirus/</td>
<td>14237</td>
</tr>
<tr>
<td>((corona* or corono*) adj1 (virus* or viral* or virinae*)).ti,ab,kw.</td>
<td>897</td>
</tr>
<tr>
<td>(coronavirus* or coronovirus* or coronavirinae* or Coronavirus* or Coronavirus* or Wuhan* or Hubel* or Huanan or "2019-nCoV" or 2019nCoV or nCoV2019 or "nCoV-2019" or "COVID-19" or COVID19 or "CORVID-19" or CORVID19 or "WN-CoV" or WNCoV or "HCoV-19" or HCoV19 or CoV or "2019 novel*" or Ncov or "n-cov" or "SARS-CoV-2" or "SARSCoV-2" or "SARS-CoV2" or "SARSCoV" or "SARS-Cov19" or "SARS-Cov-19" or "SARS-Cov-19" or Ncovor or Ncorona* or Ncorono* or NcovWuhan* or NcovHubel* or NcovChina* or NcovChinese*).ti,ab,kw.</td>
<td>30015</td>
</tr>
<tr>
<td>(((respiratory* adj2 (symptom* or disease* or illness* or condition*)) or "seafood market*" or "food market") adj10 (Wuhan* or Hubel* or China* or Chinese* or Huanan*)).ti,ab,kw.</td>
<td>783</td>
</tr>
<tr>
<td>((outbreak* or wildlife* or pandemic* or epidemic*) adj1 (China* or Chinese* or Huanan*)).ti,ab,kw.</td>
<td>176</td>
</tr>
<tr>
<td>"severe acute respiratory syndrome*".ti,ab,kw.</td>
<td>6173</td>
</tr>
<tr>
<td>exp Coronavirus Infections/</td>
<td>13790</td>
</tr>
<tr>
<td>1 or 2 or 3 or 4 or 5 or 6 or 7</td>
<td>42105</td>
</tr>
<tr>
<td>limit 8 to yr="2019 -Current"</td>
<td>9709</td>
</tr>
<tr>
<td>exp Chloroquine/</td>
<td>36522</td>
</tr>
<tr>
<td>exp hydroxychloroquine/</td>
<td>24156</td>
</tr>
<tr>
<td>(Hydroxychloroquine or chloroquine or chlorochin or hydroxychlorochin or Aralen or Plaquenil or Resochin or Dawaquin or Lariago or Hydroquin or Axemal or Dolquine or Quensyl or Quinori).ti,ab,kw.</td>
<td>32249</td>
</tr>
<tr>
<td>exp Azithromycin/</td>
<td>35854</td>
</tr>
<tr>
<td>(Azithromycin or Sumamed or Zithromax or Zmax or Z-Pak).ti,ab,kw.</td>
<td>15897</td>
</tr>
<tr>
<td>exp Lopinavir/</td>
<td>7061</td>
</tr>
<tr>
<td>lopinavir.ti,ab,kw.</td>
<td>4228</td>
</tr>
<tr>
<td>exp Receptors, Interleukin-6/ai [Antagonists & Inhibitors]</td>
<td>152</td>
</tr>
<tr>
<td>exp interleukin 6 antibody/ use oemezd</td>
<td>1427</td>
</tr>
<tr>
<td>(anti-IL-6 or (IL-6 adj2 inhibitor*) or (Anti-IL6 adj2 antibod*)).ti,ab,kw.</td>
<td>3836</td>
</tr>
<tr>
<td>exp Plasma/ use ppmc</td>
<td>4390</td>
</tr>
<tr>
<td>exp plasma transfusion/ use oemezd</td>
<td>4637</td>
</tr>
<tr>
<td>convalescent plasma.ti,ab,kw.</td>
<td>241</td>
</tr>
<tr>
<td></td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>23</td>
<td>exp Adrenal Cortex Hormones/ use ppmc</td>
</tr>
<tr>
<td>24</td>
<td>exp Pregnenolones/ use ppmc</td>
</tr>
<tr>
<td>25</td>
<td>exp corticosteroid/ use oemezd</td>
</tr>
<tr>
<td>26</td>
<td>corticosteroid*.ti,ab,kw.</td>
</tr>
<tr>
<td>27</td>
<td>glucocorticoid*.ti,ab,kw.</td>
</tr>
<tr>
<td>28</td>
<td>methylprednisolone*.ti,ab,kw.</td>
</tr>
<tr>
<td>29</td>
<td>exp Anti-Inflammatory Agents, Non-Steroidal/ use ppmc</td>
</tr>
<tr>
<td>30</td>
<td>exp nonsteroid antiinflammatory agent/ use oemezd</td>
</tr>
<tr>
<td>31</td>
<td>(nsaid* or (anti-inflammatory* adj2 non-steroid*)) or (antiinflammator* adj2 nonsteroid*).ti,ab,kw.</td>
</tr>
<tr>
<td>32</td>
<td>exp Ribavirin/</td>
</tr>
<tr>
<td>33</td>
<td>(Ribavirin or Copegus or Ribasphere or Rebetol).ti,ab,kw.</td>
</tr>
<tr>
<td>34</td>
<td>exp Oseltamivir/</td>
</tr>
<tr>
<td>35</td>
<td>(Oseltamivir or Tamiflu).ti,ab,kw.</td>
</tr>
<tr>
<td>36</td>
<td>exp Immunoglobulins, Intravenous/ use ppmc</td>
</tr>
<tr>
<td>37</td>
<td>exp immunoglobulin/iv [Intravenous Drug Administration]</td>
</tr>
<tr>
<td>38</td>
<td>(ivig or (intravenous* adj2 immunoglobulin*) or Flebogamma or Gamunex or Privigen or Octagam or Gammagard).ti,ab,kw.</td>
</tr>
<tr>
<td>39</td>
<td>exp Interferon-beta/ use ppmc</td>
</tr>
<tr>
<td>40</td>
<td>exp beta interferon/ use oemezd</td>
</tr>
<tr>
<td>41</td>
<td>(interferon adj2 beta).ti,ab,kw.</td>
</tr>
<tr>
<td>42</td>
<td>exp remdesivir/ use oemezd</td>
</tr>
<tr>
<td>43</td>
<td>(GS-5734 or remdesivir).ti,ab,kw.</td>
</tr>
<tr>
<td>44</td>
<td>10 or 11 or 12 or 13 or 14 or 15 or 16 or 17 or 18 or 19 or 20 or 21 or 22 or 23 or 24 or 25 or 26 or 27 or 28 or 29 or 30 or 31 or 32 or 33 or 34 or 35 or 36 or 37 or 38 or 39 or 40 or 41 or 42 or 43</td>
</tr>
<tr>
<td>45</td>
<td>8 and 44</td>
</tr>
<tr>
<td>46</td>
<td>limit 45 to yr="2019 -Current"</td>
</tr>
</tbody>
</table>
Table s2. Best practices and suggestions for research of treatments for patients with COVID-19

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Favor study designs that may optimize rapid accrual (e.g., multicentric)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Registration/ IRB-IEC</td>
<td>All RCTs must still be registered at clinicaltrials.gov.</td>
</tr>
<tr>
<td></td>
<td>All studies must follow Good Clinical Practice guidelines and the provisions of the Declaration of Helsinki, including IRB approval.</td>
</tr>
<tr>
<td></td>
<td>IRBs should increase resources to facilitate and accelerate study protocol review.</td>
</tr>
</tbody>
</table>

Critical elements to define *a priori*

Study design
- Although RCTs are the favored study designs to evaluate new interventions, other study designs have value especially when data needs to be evaluated quickly:
 - non-randomized controlled studies (especially cohort studies)
 - single-arm studies (prospective outcome registries), especially to identify harm

Participants
- Depending on the aim of the study, different populations may be included:
 - Aiming to evaluate efficacy: strict inclusion/exclusion criteria (excluding patients with comorbidities and comedications), smaller sample size. This design decreases variability but can increase the risk of slow accrual rate and results can be less generalizable.
 - Aiming to evaluate impact in real-life scenarios: broader population (including special populations such as patients with immunosuppression, HIV, cardiovascular comorbidities and pregnancy). This design increases variability but makes results more generalizable to the general population with better evaluation of drug-drug interactions and harms.

Laboratory-confirmed
- Standardized laboratory-confirmation should be based on NAT (nucleic acid testing) for SARS-CoV-2 on respiratory specimen rather than relying on radiological suspicion on imaging studies which are much less specific.

Clinical syndrome
- Distinguish between asymptomatic carrier state, upper respiratory tract infection and lower respiratory tract infection

Disease severity
- Use standardized definitions, for example as per WHO-China Joint Mission\(^1\):
 - mild-to-moderate: non-pneumonia and mild pneumonia
 - severe defined as tachypnoea\(^2\), oxygen saturation ≤93% at rest, or PaO\(_2\)/FiO\(_2\) ratio <300 mm Hg
 - critical respiratory failure requiring mechanical ventilation, septic shock, or other organ dysfunction or failure that requires intensive care

 Despite these standardized criteria, disease severity should focus on objective readily available clinical criteria, like the degree of respiratory failure using SaO2 or FiO2:PaO2 ratios, as opposed to location-based severity determinations such as ICU admission, which can lead to bias based on resource limitations (i.e. bed availability) or regional/institutional practice patterns.

Interventions
- Studied interventions should be detailed in terms of dose, interval, duration and timing of administration according to clinical status.

Outcomes
- Efficacy as well as harms should be reported.

 Outcomes should focus on patient-important outcomes (clinical improvement rather than improvement in inflammatory markers such as CRP or procalcitonin).

 Outcomes should be objectively measured especially if the study is not blinded. Preferably, avoid outcomes that are participant- or observer-reported involving judgement that reflect decision made by the intervention providers which can be influenced by the clinical context (for example, mortality and clinical improvement based on SaO2 or FiO2:PaO2 ratios should be selected as important outcomes rather than duration of mechanical ventilation or ICU stay). Also, the timing at which the outcomes will be measured should be decided *a priori*.

 In absence of directly measurable outcomes (especially if events are rare), surrogates can be used. If surrogates are used, select those which are the most closely associated with the outcome of
interest (e.g. select the oxygen requirement in L/min rather than radiological improvement or reduction in viral load as a surrogate for clinical improvement).

Avoid biases

<table>
<thead>
<tr>
<th>Bias</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection bias</td>
<td>Define early stoppage criteria before the onset of the study</td>
</tr>
<tr>
<td>Information bias</td>
<td>Blinding the participants and the clinicians will not always be possible due to the urgency of the situation, in which case, at minimum and in order to reduce information bias, outcome assessors should be blinded.</td>
</tr>
<tr>
<td>Confounders</td>
<td>Multiple cointerventions (such as antivirals, corticosteroids, immunomodulators) are used. Protocolize their use to ensure that studied groups received the same cointerventions and timing of administrations. If not possible, adjust the analysis for potential confounders (including time-varying confounding) and explore for interactions.</td>
</tr>
</tbody>
</table>

Avoid imprecision

| Sample size | Because the a priori estimation of efficacy may be unknown, it is important to readjust sample sizes prior to stopping recruitment as new evidence emerges. |

Submission

| Peer-review | Peer-review remains crucial in the process. Journals should add resources to expedite reviews by increasing the number of editors and reviewers, shorten the review process, favor statistical review and adhere to reporting guidelines (i.e., CONSORT for RCTs or STROBE for non-randomized studies at equator-network.org) |

Figure s1. PRISMA Flow Diagram

Records identified through electronic and manual searching: Ovid Medline/EMBASE (n = 429)

Duplicates removed (n = 117)

Records screened for title and abstract (n = 312)

Titles and abstracts excluded (n = 270)

Records screened for full text (n = 48)

Records excluded:
- Editorial/commentary/systematic review/protocol (n = 32)
- Patients not infected with COVID-19 (n = 2)
- Intervention outside scope (n = 1)

Studies included in evidence profiles (n = 13)
Figure s2: HCQ vs control: pooled estimates

Clinical progression

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Risk Ratio IV, Fixed, 95% CI</th>
<th>Risk Ratio IV, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen Z 2020</td>
<td>5</td>
<td>15</td>
<td>0.11</td>
<td>0.71 [0.29, 1.75]</td>
<td>0.61 [0.26, 1.43]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>46</td>
<td>46</td>
<td>100.0%</td>
<td>0.015 [0.003, 0.076]</td>
<td>0.005 [0.000, 0.020]</td>
</tr>
<tr>
<td>Total events</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>$\chi^2 = 1.46, df = 1 (P = 0.23); I^2 = 32%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect</td>
<td>$z = 1.15 (P = 0.25)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Any adverse events

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Events</th>
<th>Total Events</th>
<th>Weight</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
<th>Risk Ratio M-H, Fixed, 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chen Z 2020</td>
<td>4</td>
<td>15</td>
<td>80.0%</td>
<td>2.00 [0.43, 9.32]</td>
<td>2.60 [0.67, 10.16]</td>
</tr>
<tr>
<td>Total (95% CI)</td>
<td>46</td>
<td>46</td>
<td>100.0%</td>
<td>0.01 [0.001, 0.35]</td>
<td>0.01 [0.000, 0.31]</td>
</tr>
<tr>
<td>Total events</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity</td>
<td>$\chi^2 = 0.29, df = 1 (P = 0.59); I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect</td>
<td>$z = 1.37 (P = 0.17)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure s3: Pooled rates of virological failure using fixed effect model (inverse variance)

<table>
<thead>
<tr>
<th>Studies</th>
<th>Estimate (95% C.I.) Er/Trt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gautret 2020</td>
<td>0.344 (0.225, 0.463)</td>
</tr>
<tr>
<td>Molina 2020</td>
<td>0.800 (0.552, 1.000)</td>
</tr>
<tr>
<td>Overall (I^2=90%, P=0.001)</td>
<td>0.430 (0.322, 0.537)</td>
</tr>
</tbody>
</table>

Proportion
Tables s3a – s3f. Characteristics of Included Studies

Table s3a. Intervention/comparator: Hydroxychloroquine vs no HQC
Population: hospitalized patients with COVID-19

<table>
<thead>
<tr>
<th>Study / year</th>
<th>Country/ Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
</table>
| Chen Z/ 2020 | China /Renmin Hospital of Wuhan University | RCT | N= 62 hospitalized patients with chest CT with pneumonia SaO2 > 93% PaO2:FiO2 > 300 mmHg | Hydroxychloroquine 400 mg/day x 5 days and standard of care | Standard of care | Radiological changes from day 0-6 | Allocation concealment unclear
Researchers and patients blinded to treatment assignment; however, did not mention placebo
Unclear if outcome assessments were blinded
Method of assessment for progression to severe disease and adverse events not described | Epidemiologic study of COVID-19
Pneumonia to Science and Technology Department of Hubei Province |
| Chen J/ 2020 | China/ Shanghai Public Health Clinical Center | RCT | 30 hospitalized patients | Hydroxychloroquine 400 mg daily x 5 days and standard of care | Standard of care | Mortality
Radiological progression at day 3 | Did not report allocation concealment or blinding
Standard of care included supportive care in additional antiviral agents | Shanghai Science and Technology Commission
Fudan First-Class University and First-Class Discipline Construction Project |

Table S3b. Intervention/comparator: Hydroxychloroquine + azithromycin vs no HQC/azithromycin

<table>
<thead>
<tr>
<th>Study / year</th>
<th>Country/Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gautret P/2020a*</td>
<td>France/ Méditerranée Infection University Hospital Institute, Marseille Centre (recruited from various centers in France)</td>
<td>Nonrandomized, Case control</td>
<td>42 symptomatic adult patients Upper and/or lower tract infection</td>
<td>Hydroxychloroquine 200 mg three times a day x 10 days and azithromycin 500 mg x 1 day, then 250 mg x 4 days (n=6) Hydroxychloroquine 200 mg three times a day x 10 days (n=14, excluded from data extraction)</td>
<td>No treatment group total (n=12) (4 asymptomatic pediatric patients excluded from data extraction)</td>
<td>Viral clearance at day 6</td>
<td>No adjustment for critical confounders (such as cotreatments and their timing of administration) Attrition of 6/42 patients due to cessation of treatment</td>
<td>French Government-Investments for Future Program</td>
</tr>
<tr>
<td>Study</td>
<td>Country/Institution</td>
<td>Study Design</td>
<td>Participants</td>
<td>Treatment</td>
<td>Control Group</td>
<td>Outcomes</td>
<td>Selection for Treatment Arms</td>
<td>Co-Author Notes</td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-----------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Gautret P/2020 b*</td>
<td>France/Méditerranée Infection University Hospital Institute, Marseille Centre (recruited from various centers in France)</td>
<td>Single arm, Case-series</td>
<td>80 patients: 4 asymptomatic / 76 symptomatic</td>
<td>Hydroxychloroquine 200 mg three times a day x 10 days and azithromycin 500 mg x 1 day, then 250 mg x 4 days</td>
<td>No control group</td>
<td>Mortality, Viral clearance at day 6, QT prolongation</td>
<td>Uncontrolled study</td>
<td>Unclear timing of the intervention</td>
</tr>
<tr>
<td>Molina JM/2020</td>
<td>France/Saint Louis Hospital</td>
<td>Single arm, Case-series</td>
<td>11 hospitalized patients</td>
<td>Hydroxychloroquine 600 mg daily x 10 days and azithromycin 500 mg x 1 day, then 250 mg x 4 days</td>
<td>No control group</td>
<td>Mortality, Nasopharyngeal viral clearance at days 5-6</td>
<td>Uncontrolled study</td>
<td>Unclear timing of the intervention</td>
</tr>
<tr>
<td>Chorin E/2020</td>
<td>United States/NYU Langone Health</td>
<td>Single arm, Case-series</td>
<td>84 consecutive, hospitalized patients</td>
<td>Hydroxychloroquine and azithromycin</td>
<td>No control group</td>
<td>Mortality, Significant QTc prolongation (> 500)</td>
<td>Uncontrolled study</td>
<td>Unclear timing of the intervention</td>
</tr>
</tbody>
</table>
Last updated April 11, 2020 at 10:58 AM EDT and posted online at www.idsociety.org/COVID19guidelines. Please check website for most updated version of these guidelines.

Cointerventions not reported

*Overlapping study populations

<table>
<thead>
<tr>
<th>Study / year</th>
<th>Country / Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cao B/2020</td>
<td>China/Jin Yin-Tan Hospital</td>
<td>RCT</td>
<td>199 hospitalized patients SaO2 < 94% on RA or PaO2:FiO2 < 300 mmHg</td>
<td>Lopinavir/ritonavir 400/100 mg twice daily x 14 days and standard of care</td>
<td>Standard of care</td>
<td>Clinical status at day 14 Mortality at day 28 Adverse events leading to discontinuation of treatment</td>
<td>Lack of blinding for patients, providers, clinical outcome assessments Time of illness onset to randomization: median 13 days Fourteen percent of lopinavir/ritonavir treated patient were not able to complete the 14-day treatment due to adverse events</td>
<td>Major Projects of National Science and Technology on New Drug Creation and Development Chinese Academy of Medical Sciences Emergency Project of COVID-19 National Science Grant for Distinguished Young Scholars</td>
</tr>
</tbody>
</table>

Table S3d. Intervention/comparator: corticosteroids vs no corticosteroids
Population: hospitalized patients with COVID-19 without ARDS

<table>
<thead>
<tr>
<th>Study / year</th>
<th>Country/Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wu C, 2020</td>
<td>China, Jinyintan Hospital in Wuhan</td>
<td>Retrospective cohort study</td>
<td>201 hospitalized patients with confirmed COVID-19 pneumonia, from which 84 patients with ARDS were analyzed</td>
<td>Methylprednisolone (dose and interval not reported) (n=50)</td>
<td>No methylprednisolone (n=34)</td>
<td>Mortality in patients with ARDS</td>
<td>Critical information not reported on baseline patients’ characteristics and severity illness between the groups of interest</td>
<td>Prevention and Treatment of Infection in Novel Coronavirus Pneumonia Patients from the Shanghai Science and Technology Committee, the Special Fund of Shanghai Jiaotong University for Coronavirus Disease 2019 Control and Prevention, and Academic Leader of Shanghai Qingpu District Healthcare Commission</td>
</tr>
</tbody>
</table>
Wang Y, 2020 | China, Wuhan Union Hospital of Huazhong University of Science and Technology | Retrospective cohort study | 46 hospitalized patients with severe confirmed COVID-19 pneumonia
Severe was defined as: 1) RR \geq30 breath/min; 2) SaO2 \leq93%; 3) PaO2/FiO2 \leq300 mmHg, 4) older than 60 years or with hypertension, diabetes, coronary disease, cancer, pulmonary heart disease, structural lung disease and immunosuppression | Methylprednisolone 1-2mg/kg/d IV for 5-7 days (n=26) | No methylprednisolone (n=20) | Mortality
Critical information not reported on baseline risk and severity pneumonia/ARDS between the groups of interest
Confounding-by-indication very likely
Variability in timing, dosage and duration of methylprednisolone administered
Multiple cointerventions (all received lopinavir-ritonavir, interferon-alpha, thymosin)
Unadjusted analysis | Natural Science Foundation of China |

Liu Y, 2020 | Central Hospital of Wuhan | Retrospective cohort study | 109 hospitalized patients with confirmed COVID-19, from which 53 patients with ARDS were analyzed
Patients were excluded if: malignant tumors, previous
Glucocorticoid therapy (dose and interval not reported) (n=37) | No Glucocorticoid therapy (n=16) | Mortality in patients with ARDS
Critical information not reported on patients characteristics and baseline risk between the groups of interest
Confounding-by-indication | Health and Family Planning Commission of Wuhan Municipality |
craniocerebral operation, or died on admission patients who had been transferred to other hospitals for advanced life support and patients with mild symptoms who had been transferred to mobile cabin hospitals.

| Sun F, 2020 | Zhongnan Hospital of Wuhan University | Retrospective cohort study | 165 consecutive hospitalized patients with confirmed COVID-19, from which 139 non-severe were analyzed | Systemic glucocorticoid therapy for 4-11 days (dose and interval not reported) (n=90) | No systemic glucocorticoid therapy (n=49) | Clinical deterioration and mortality | Variability in timing, possibly dosage and duration of glucocorticoid administered | Confounding-by-indication | Variability in cointerventions (antivirals such as lopinavir-ritonavir, arbidol, oseltamivir and interferon-alpha, immunoglobulins and traditional medicines) | Unadjusted and partially adjusted analyses (for age and comorbidities) | National Natural Science Foundation of China |

Table s3e. Intervention/comparator: Tocilizumab vs no Tocilizumab

<table>
<thead>
<tr>
<th>Study / year</th>
<th>Country/ Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xu X, 2020</td>
<td>China, First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital) and Anhui Fuyang Second People’s Hospital</td>
<td>Case series</td>
<td>21 patients, 17 with severe and 4 with critical disease.</td>
<td>Tocilizumab 400 mg IV X 1 dose (except for 3 patients who received a second dose 12 hours later)</td>
<td>No control group</td>
<td>Clinical and radiological improvement on CT scan, adverse drug reactions, and mortality</td>
<td>Uncontrolled study</td>
<td>Department of Science and Technology of Anhui Province and Health Commission of Anhui Province and the China National Center for Biotechnology Development 175</td>
</tr>
</tbody>
</table>

Table s3f. Intervention/comparator: convalescent plasma vs no convalescent plasma
Population: hospitalized patients with COVID-19

<table>
<thead>
<tr>
<th>Study year</th>
<th>Country/Hospital</th>
<th>Study design</th>
<th># patients / severity of disease</th>
<th>Intervention</th>
<th>Comparator</th>
<th>Outcomes reported</th>
<th>Risk of bias considerations</th>
<th>Funding source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duan K, 2020</td>
<td>China/Wuhan</td>
<td>Observational study (case series with comparison to historical controls)</td>
<td>10 patients with severe infection receiving convalescent plasma and 10 historical controls</td>
<td>Transfusion with 200 mL of convalescent plasma between 10 and 20 days from onset of symptoms (within 4 hours of collection)</td>
<td>Historical control group not receiving convalescent plasma</td>
<td>For the intervention group: Clinical improvement (need for mechanical ventilation), adverse events and mortality</td>
<td>No adjustment for critical confounders (such as cotreatments and their timing of administration)</td>
<td>Shanghai Guangci Translational Medicine Development Foundation</td>
</tr>
</tbody>
</table>

For the intervention group:
- Aged ≥18 years with:
 1) RR ≥30 beats/min, 2) SpO2 ≤ 93%, or 3) PaO2/FiO2 ≤ 300 mmHg
- Excluded if: 1) previous allergic history to plasma or ingredients, or 2) serious general conditions not suitable for CP transfusion

For the historical controls: random selection of 10 patients from the cohort treated in the same hospitals and matched by age, gender and severity of the disease

Convalescent plasma consisted of inactivated CP with neutralization activity >1:640

For the historical controls:
- Clinical improvement and mortality

Unclear if recruitment was consecutive in the intervention group

Variability in cointerventions (all received antivirals such as arbidol, ribavirin, remdesivir, oseltamivir and/or interferon-alpha; some received methylprednisolone)
| Shen C, 2020 | China / Shenzhen Third People's Hospital | Case series | 5 patients, critically ill with ARDS
Critical was defined as: 1) respiratory failure requiring mechanical ventilation, 2) shock, or 3) failure of other organs requiring admission to the ICU
Patients included if: severe pneumonia with rapid progression and continuously high viral load despite antiviral treatment; PaO2/FiO2 <300; and mechanical ventilation | Transfusion with 400 mL of convalescent plasma between 10 and 22 days after admission (on the same day as it was obtained from the donors)
Convalescent plasma was obtained by apheresis from 5 donors who recovered from COVID-19.
Convalescent plasma consisted of SARS-CoV-2–specific antibody (IgG) binding titer greater than 1:1000 (end point dilution titer by ELISA) and | No control group | Clinical improvement (need for mechanical ventilation), adverse events and mortality | Uncontrolled study
Unclear if recruitment was consecutive
Variability in cointerventions (all received lopinavir-ritonavir, methylprednisolone, interferon alfa-b1; some also received favipiravir, arbidol and/or darunavir) | National Science and Technology Major Project, Sanming Project of Medicine in Shenzhen, China
Postdoctoral Science Foundation, Shenzhen Science and Technology Research and Development Project, National Natural Science Foundation of China, Shenzhen Science and Technology Research and Development Project, and The Key Technology R&D Program of Tianjin |