Ivermectin as a potential COVID-19 treatment from the pharmacokinetic point of view

Georgi Momkov1*, Denitsa Momkova2

1Lab of Experimental Chemotherapy and Molecular Pharmacology, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, Bulgaria
2Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Medical University of Sofia, Bulgaria

Corresponding author: Georgi Momkov, DSc, Lab of Experimental Chemotherapy and Molecular Pharmacology, Department of Pharmacology, Pharmacotherapy and Toxicology, Faculty of Pharmacy, Medical University of Sofia, 2 Dunav Str., 1000 Sofia, Bulgaria; e-mail: gmomekov@gmail.com;

Abstract

The broad-spectrum antiparasitic agent ivermectin has been very recently found to inhibit SARS-CoV-2 in vitro and proposed as a candidate for drug repurposing in COVID-19. In the present report the in vitro antiviral activity end-points are analyzed from the pharmacokinetic perspective. The available pharmacokinetic data from clinically relevant and excessive dosing studies indicate that the SARS-CoV-2 inhibitory concentrations are not likely to be attainable in humans.

Key words: ivermectin; SARS-CoV-2; COVID-19; Drug repurposing

Introduction

The COVID-19 pandemics has fuelled much research efforts towards repurposing of existing drugs as possible antiviral agents, whereby the therapeutic strategies have been largely based on preexisting data for the preceding coronaviral outbreaks TORS and MERS1-3. The drug regulatory agencies, health authorities, key opinion leaders and policy decision makers have been significantly strained by the dilemma of evidence-based medicine and good clinical practice versus the prompt need for safe and effective treatment4. Unfortunately we have been witnessing huge public and political pressure for legitimation of drug-repurposing and off-label use worldwide, which nonetheless could be regarded as an acceptable compromise, pending the emergency of the current situation, but only in case of drugs with well-defined safety profiles and at least some clinical evidence in COVID-194,5. Conversely most of the treatment protocols are based on observational studies and anecdotic reports4,6-9, albeit with a hope that the promptly emerging data from randomized studies will enable switching COVID-19 treatment back to the avenues of evidence-based medicine10. An exceptionally alarming phenomenon however is the public communication of drugs with preliminary in vitro activities against SARS-CoV-2 as
potential therapeutics for COVID-19 eventually causing malignant reverberation in social media. Such example is the otherwise very interesting study of Caly et al., recently published in Antiviral Research11.

This paper is describing the in vitro antiviral activity of the antiparasitic agent ivermectin in a model of Vero/hSLAM cells infected with a SARS-CoV-2 isolate (Australia/VIC01/2020)11. The authors have performed a pilot experiment using continuous exposure of the cells to ivermectin at 5 µmol/L and found time-dependent decrease of cell associated and supernatant viral RNA. Thereafter the antiviral activity was assessed following continuous exposure to serial dilutions of ivermectin, which caused concentration-dependent antiviral effects with practically total eradication at 5 µmol/L and half-maximal inhibition at approximately 2.5 µmol/L11.

The academic, virological and pharmacological impact of the newly discovered antiviral effects of ivermectin against SARS-CoV-2 is beyond any doubt, but nevertheless the notion for possible clinical translation and repurposing, which has generated enormous media coverage, needs to be carefully addressed with reference to the pharmacokinetics of ivermectin. In this paper we sought to analyze the dosing regimens of the drug, the available maximal plasma concentration levels to allow detailed juxtaposition with the SARS-CoV-2 inhibitory effects and to question the paradigm for the plausibility of ivermectin repurposing in COVID-19.

Materials and methods

A literature survey was performed in order to analyze the published dose regimens and to collect human exposure data for ivermectin, following clinically relevant (150 – 800 µg/kg) or excessive dosing (up to 2000 µg/kg). The available pharmacokinetic data for ivermectin in patients with parasitic infection and healthy volunteers were pooled and the maximal plasma concentration levels (C\textsubscript{max}) used as surrogates for juxtaposition with the in vitro SARS-CoV-2 inhibitory findings. The published concentrations shown antiviral activity were recalculated in ng/ml to allow direct comparison with the pharmacokinetic data.

Results and discussion

Ivermectin has a valuable clinical role for the management of different parasitic diseases whereby the described therapeutic regimens, could be summarized as follows: 150 µg/kg once yearly for treatment of onchocerciasis, 200 µg/kg as a single dose for strongyloidiasis, 150 to 200 µg/kg twice yearly or alternatively 300 to 400 µg/kg once yearly in endemic areas for lymphatic filariasis, and 200 µg/kg in conjunction with topical drugs for hyperkeratotic, also known as crusted or ‘Norwegian’ scabies12-14.

Ivermectin is a semisynthetic analogue of the natural product avermectin B\textsubscript{1a}, a lipophilic macrolide isolated from Streptomyces avermitilis developed as a crop management insecticide. Ivermectin affects
a plethora of invertebrate species, incl. parasitic nematodes, arachnids, and insects. Its mode of action on target species is by potentiating GABA-mediated neurotransmission and by binding to glutamate-gated Cl⁻ channels, found only in invertebrates. The drug induces tonic paralysis of the musculature of susceptible parasites, and eventually death. At the recommended doses, ivermectin does not readily penetrate the CNS of mammals, where GABA functions as a neurotransmitter. Conversely in healthy volunteers and infected patients the drug is usually well tolerated at the therapeutic dose ranges. A recent meta-analysis has shown that even larger doses (up to 800 µg/kg) with a several years period of follow-up could be well tolerated in patients with parasitic infections. The largest dose intensity with registered pharmacokinetic parameters in healthy subjects is 120 mg, corresponding to up to 2000 µg/kg.

As evident form the analyzed pharmacokinetic data both the clinically applied dosage schedules and the aforementioned excessive 120 mg dose yield blood levels at the nanogram/ml i.e. nanomolar range (Table 1). These concentrations are orders of magnitude lower, as compared to the in vitro antiviral end-points, described in the study of Caly et al. Table 2 summarizes the in vitro inhibitory concentrations, recalculated in ng/ml (based on a molecular weight of 875.1) to allow direct juxtaposition with the pharmacokinetic parameters in Table 1. Moreover the in vitro data have been compared to the Cₘₐₓ values, obtained after 36 mg and 120 mg doses corresponding to dose intensities of up to 700 µg/kg or 2000 µg/kg respectively, with calculation of the corresponding exposure ratios.

The analyzed data show that at least at the clinically relevant dose ranges of ivermectin the published in vitro inhibitory concentrations and especially the 5 µmol/L level causing almost total disappearance of viral RNA are virtually not achievable with the heretofore known dosing regimens in humans. The 5 µmol/L concentration is over 50 times higher than the levels obtainable after 700 µg/kg and 17 times higher vs. the largest Cₘₐₓ found in the literature survey (247.8 ng/ml). Moreover the authors` claim for achieving viral inhibition with a single dose is inappropriate because practically the infected cells have been continuously exposed at concentrations that are virtually unattainable even with excessive dosing of the drug. With other words the experimental design is based on clinically irrelevant drug levels with inhibitory concentrations whose targeting in a clinical trial seems doubtful at best.
Table 1. Published pharmacokinetic parameters for ivermectin following clinically relevant and excessive dosing

<table>
<thead>
<tr>
<th>Pharmacokinetic study</th>
<th>Dose</th>
<th>Absorption parameters</th>
<th>Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>C_{max} (ng/ml)</td>
<td>C_{max} (nmol/L)</td>
</tr>
<tr>
<td>Krishna et al., 1993</td>
<td>6 mg (tablets)</td>
<td>23.1</td>
<td>26.4</td>
</tr>
<tr>
<td>Krishna et al., 1993</td>
<td>12 mg (tablets)</td>
<td>30.4</td>
<td>34.7</td>
</tr>
<tr>
<td>Long et al., 2001</td>
<td>6 mg (tablets)</td>
<td>20.2</td>
<td>23.1</td>
</tr>
<tr>
<td>Long et al., 2001</td>
<td>12 mg (tablets)</td>
<td>23.5</td>
<td>26.9</td>
</tr>
<tr>
<td>Long et al., 2001</td>
<td>18 mg (tablets)</td>
<td>31.2</td>
<td>35.7</td>
</tr>
<tr>
<td>Edwards et al., 1988</td>
<td>12 mg (solution)</td>
<td>81</td>
<td>92.6</td>
</tr>
<tr>
<td>Edwards et al., 1988</td>
<td>12 mg (tablets)</td>
<td>50</td>
<td>57.1</td>
</tr>
<tr>
<td>Edwards et al., 1988</td>
<td>12 mg (capsules)</td>
<td>46</td>
<td>52.6</td>
</tr>
<tr>
<td>Ogbuokiri et al., 1993</td>
<td>150 μg/kg</td>
<td>37.9</td>
<td>43.3</td>
</tr>
<tr>
<td>Baraka et al., 1996</td>
<td>150 μg/kg</td>
<td>52.2</td>
<td>59.7</td>
</tr>
<tr>
<td>Elkassaby, 1991</td>
<td>150 μg/kg</td>
<td>39</td>
<td>44.6</td>
</tr>
<tr>
<td>Okonkwo et al., 1993</td>
<td>6 mg (tablets)</td>
<td>38.2</td>
<td>43.7</td>
</tr>
<tr>
<td>Njoo et al., 1995</td>
<td>150 μg/kg</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Muñoz et al., 2018</td>
<td>36 mg (550 - 700 μg/kg)</td>
<td>96.2</td>
<td>109.9</td>
</tr>
<tr>
<td>Guzzo et al., 2002</td>
<td>90 mg</td>
<td>158.1</td>
<td>180.7</td>
</tr>
<tr>
<td>Guzzo et al., 2002</td>
<td>120 mg (1404 - 2000 μg/kg)</td>
<td>247.8</td>
<td>283.2</td>
</tr>
</tbody>
</table>
Table 2. Comparison between the in vitro inhibitory concentration of ivermectin11 with exemplar published C$_{\text{max}}$ values of the drug12,17

<table>
<thead>
<tr>
<th>In vitro end-points11</th>
<th>Inhibitory concentrations (µmol/L)</th>
<th>Inhibitory concentrations recalculated in µg/ml</th>
<th>Inhibitory concentrations recalculated in ng/ml</th>
<th>Ratio between the inhibitory concentrations and clinically relevant C$_{\text{max}}$ (96.2 ng/ml)</th>
<th>Ratio between the inhibitory concentrations and C$_{\text{max}}$ after excessive dosing 247,8 (ng/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IC$_{50}$ - cell associated (E gene)*</td>
<td>2.8</td>
<td>2.45</td>
<td>2450</td>
<td>25.5</td>
<td>9.9</td>
</tr>
<tr>
<td>IC$_{50}$ - supernatant (E gene)</td>
<td>2.4</td>
<td>2.1</td>
<td>2100</td>
<td>25.9</td>
<td>8.5</td>
</tr>
<tr>
<td>IC$_{50}$ - cell associated (RdRp gene)**</td>
<td>2.5</td>
<td>2.19</td>
<td>2190</td>
<td>27.0</td>
<td>8.8</td>
</tr>
<tr>
<td>IC$_{50}$ - supernatant (RdRp gene)</td>
<td>2.2</td>
<td>1.95</td>
<td>1950</td>
<td>24.1</td>
<td>7.9</td>
</tr>
<tr>
<td>Average IC$_{50}$</td>
<td>2.475</td>
<td>2.166</td>
<td>2450</td>
<td>30.6</td>
<td>10</td>
</tr>
<tr>
<td>IC$_{90-100}$ (highest and most effective concentration tested)</td>
<td>5.0</td>
<td>4.3755</td>
<td>4375</td>
<td>55.0</td>
<td>17.7</td>
</tr>
</tbody>
</table>

*E - envelope protein gene; ** RdRp - RNA-dependent-RNA-polymerase gene.11

The repurposed antimalarial drugs hydroxychloroquine and chloroquine that have been included in numerous COVID-19 treatment protocols also have micromolar inhibitory concentrations against SARS-CoV-226 and nanomolar C$_{\text{max}}$ values27. Nevertheless these agents have enormous apparent volumes of distribution and presumably disproportionally larger tissue levels relative to the plasma concentrations, which makes the translation of the in vitro data plausible27-29. The other very promising agent tested in clinical trials and applied as compassionate use for COVID-19 is remdesivir1,30. This broad-spectrum antiviral drug originally developed for Ebola shows potent inhibitory effects against SARS-CoV-2 with an IC$_{50}$ of 0.77 µmol/L (464 ng/ml)31. This concentration is readily attainable as the drug is given as venous infusion. The typical dosing schedule for remdesivir - initial infusion of 200 mg, followed by 100 mg/daily for a total of 5 days yields maximal plasma concentrations of 5440 ng/ml in the first day and 2610 on day 530.

In case of ivermectin, however, the potential repurposing plausibility if any is at present not very likely, because the antiviral concentrations would be attainable only after massive overdose. The therapeutic
application of ivermectin is usually not associated with significant toxicity, whereby the majority of documented adverse effects, such as: nausea, rash, dizziness, itching, eosinophilia, abdominal pain, fever, tachycardia, could be generally attributable to the gross lethality of invading microfilarias giving rise to Mazzotti-like reactions13,14,32. Nevertheless at large doses the drug could penetrate the blood-brain barrier and could affect GABA-ergic transmission causing CNS depression and potentiation of the effects of benzodiazepines15. Human exposures at doses multifold higher than the therapeutic is expected to give rise to side effects similar to those documented in preclinical mammalian testing13,15. Human overdoses have been associated with vomiting, tachycardia and ECG abnormalities, significant blood pressure fluctuations, CNS effects (drowsiness, ataxia) and visual disturbances (mydriasis). Accidental self-injection of a veterinary medicinal product has produced signs of clinical toxicity, albeit the drug was applied at therapeutically relevant dose (approximately 200 μg/kg)15.

It has to be emphasized that general public communication of drugs as potential COVID-19 therapeutics, based solely on \textit{in vitro} data, is neither scientifically nor ethically appropriate. Ivermectin has been previously shown to exert antiviral activity \textit{in vitro} against Dengue fever virus (DENV)33, influenza virus34, West Nile Virus35, Venezuelan equine encephalitis virus36, and heralded as possible antiviral drug, but so far there has not been any clinical translation of these data. Noteworthy a clinical trial for the treatment of Dengue fever in Thailand failed to show clinical benefits11. In light to the aforementioned pharmacokinetic considerations this is not surprising given the published inhibitory concentrations against DENV1-4 ranged 1.66 - 2.32 μM33.

Conclusion

The world has already seen epidemics of self-medication, drug shortages and even overdoses with chloroquine and hydroxychloroquine37,38. Unfortunately the Caly et al. study which prompted enormous public interest has the potential to evoke similar tragic sequels, especially having in mind that in many countries the drug is only available as solutions for injection for veterinary use, whose potential for serious toxicological outcomes in humans is unanimous. In Bulgaria in particular this study has prompted the National Veterinarians` Union to share their concerns about the hysteria this study has evoked and to firmly discourage self-medication with ivermectin, which in this country is only available for use in animals39. In a 10th April letter to stakeholders FDA has similarly shared its concerns on this issue and explicitly advised against any attempts for self-medication with ivermectin for COVID-1940.
References:

